If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2y^2-56-96)=0
We get rid of parentheses
2y^2-56-96=0
We add all the numbers together, and all the variables
2y^2-152=0
a = 2; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·2·(-152)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{19}}{2*2}=\frac{0-8\sqrt{19}}{4} =-\frac{8\sqrt{19}}{4} =-2\sqrt{19} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{19}}{2*2}=\frac{0+8\sqrt{19}}{4} =\frac{8\sqrt{19}}{4} =2\sqrt{19} $
| -21=4r+3 | | 115=4x^2/(1.00-x)*(2.00-x) | | x-1/20=1/10-x | | 12=1.1x-4.3 | | -3r-15=4 | | 0,0695*x^2+0,008*x=0,064 | | 25+3x=5x | | Y’’-4y’-12y=0 | | 6r-12=-18 | | ƒ(n)=1.25n+6.25;25 | | f(-6)=3/4•-3 | | 25x+16x=57+312 | | 9c=8c-9 | | -7x-5=1 | | 2x+40=9x-1 | | n/20=16 | | 25x+16x=57+5312 | | 4x-2=13(25)+12 | | 5y+6=-6 | | 8q-8=72+8 | | y-3=-48 | | -3a+21+8a=4a-6a | | R(x)=6x-C(x)=0.001x^2+0.7x+80 | | 8q+12=2(3q-2) | | R(x)=6x,C(x)=0.001x^2+0.7x+80 | | 0=8t-0.8t^2 | | 10=8t-0.8t^2 | | 4-9x+3x=8+9x-7 | | 2/x+4/2x=-2 | | 3x+6-x=6+3x=8 | | 79=2x+6 | | 94=344-x |